
Unstructured Data Analysis

George Chen

Lecture 9: Topic modeling (cont’d);
intro to predictive data analytics

An Alternative Feature Vector
Representation for Text: TF-IDF

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i

multiply TF by
<latexit sha1_base64="fAbKetacGnWsSTCAoRXjuWVXoJw=">AAAEJnicjVNLbxMxEHYbHmV5tXDkYvUhlUu0W6kUDpVSEBIXUBF9SXFUeb2zianXXtnetJG1/4QTJ35HryBuCLjxH/gDeDeJEhIQjLXSp3l+MzsT54IbG4bfFxYbV65eu750I7h56/adu8sr946MKjSDQ6aE0icxNSC4hEPLrYCTXAPNYgHH8dmzyn7cB224kgd2kEMno13JU86o9arT5UdEqC5JNWUuKh0mGbW9OHb75SaxcGFdoliRgbS4Rw0+VzrB5duHuDxdXgubYS14HkQjsNba/flq9f3lzv7pyuI3Ms7FBDWmHYW57TiqLWcCyoAUBnLKzmgX2h5KmoHpuLrBEm94TYJTpf3nudTa6QhHM2MGWew9qwbMrK1S/snWLmz6uOO4zAsLkg0LpYXAVuFqWjjhGpgVAw8o09xzxaxH/bSsn2kQBBt4OpthVEDScT0QfbBlZdUg4ZypLKMyISnNuBgkkNJCWEdMOoIlnkl0EHVc1WnFaabIdPIpraFy2GUQzDPaDZtPtia0iFQ6o6IqEPwnweCv7P5NwiWm8h428gbsS++xJ/IejcHXqP9JGqdlHV36oqMkPrtKuOyW0zxcfOEdxWz3YJUSsbqo9Xv2KXS5fC77XCtZLdyEmCMCLImzqbL+ebqTITjCZeId6/UnhRzHrtcxifF3sl5WIWODv4VodvPnwdFWM9puhq/9UbTQUJbQA7SKNlGEdlALvUD76BAx9A5doo/oU+ND43PjS+Pr0HVxYRRzH/0mjR+/AJc+b0k=</latexit>

log
1

P(document has word j)

Term frequency
(TF)

Intuition: words that appear in more documents are likely less useful
(same intuition as stop words!) — let’s downweight these words!

<latexit sha1_base64="D6uig3ZX1MfFFl3EOARQ4nN4aR8=">AAAEMnicjVPNbtQwEHYbfkr4a+HIxWJbqVxWSSUEHCq1RUhckIron1SvKseZ7Jo6dmQ7264sPwJXnoEDR56DK4Ub4spD4GS36rIFga1In2bmm/lm4skqwY1Nkq9z89GVq9euL9yIb966fefu4tK9PaNqzWCXKaH0QUYNCC5h13Ir4KDSQMtMwH52/Lzx7w9BG67kjh1V0CtpX/KCM2qD6Whxax0Tofqk0JS51Du8OoakQyycWodzxeoSpDXYDqjFAzoEfKJ0jv1b76R/hP3RYifpJu3Bl0E6AZ2NrY/r0ft3w+2jpfkzcp6WCWrMYZpUtueotpwJ8DGpDVSUHdM+HAYoaQmm59pmPV4JlhwXSodPWtxapxmOlsaMyixEltQOzKyvMf7Jd1jb4mnPcVnVFiQbFypqga3CzeRwzjUwK0YBUKZ50IrZgIZh2TDfOI5X8HQ2w6iAvOcGIIZgfePVIOGEqbKkMicFLbkY5VDQWlhHTDGBHs8k2kl7rum00TRTZDr5lNVQOe4yji8rWk+6z9YuZBGpdElFUyD+T4HxX9X9W4TLTRM9buQN2FchYlNUA5pBqNH+kyIrfMv2oegkSciuci77flqHy05DoJjtHqxSIlOnrX3TbkGfyxdyyLWSzYO7EOaIAEuycqpsuEHuxRAc4TIPge0qkFqec5dbTm7Cxiz7hnLuCLuQzr78y2BvrZs+7iavw1JsoPFZQA/QQ7SKUvQEbaCXaBvtIoY+oM/oCzqLPkXfou/Rj3Ho/NyEcx/9dqKfvwCzdXM5</latexit>

= log
1

(# documents that have word j
n)

<latexit sha1_base64="fHX0lo5FJ+av6nkC/JyGtiMyWuY=">AAAEa3icjVNbaxQxFM62q63jpVv7pj4E24UKsswURAULrSL4IlTtDTpLyWTO7MZmkiHJbLuE/BH/k+/6KD77H8zMbtlxq9gMAx/n8p3vnOQkBWfahOH31sJi+8bNpeVbwe07d++tdFbvH2pZKgoHVHKpjhOigTMBB4YZDseFApInHI6SszeV/2gESjMp9s24gH5OBoJljBLjTacd28XbOOZyEGeKUBs5izcnMF6PDVwYi1NJyxyE0dgMicFDMgJ8LlWK3WdnhXuCXdCkEJ7iOrnYnXbWw15YH3wVRFOwvvPqafjz65ePe6erC9/iS0bKidYnUViYviXKMMrBBXGpoSD0jAzgxENBctB9W0/J4a63pDiTyv/C4NrazLAk13qcJz4yJ2ao532V8W++k9JkL/qWiaI0IOikUFZybCSuRo5TpoAaPvaAUMW8VkyHxM/K+IsJgqCLm2yaEg5p3w6Bj8C4yqtAwDmVeU5EGmckZ3ycQkZKbmyssyl0eI5oP+rbqtNK01yRJnnDqomYdBkEVxVth72XWzNZsZAqJ7wqEFxTYPBPdf8XYVNdRU8a+QTmvY/Y5cWQJOBr1HeSJZmrs50vOiXx7DJlYuCaOmxy4QP5fPdgpOSJvKjtu+Y1DJh4K0ZMSVE9uJkwG3MwcZI3yvrPy50NwcZMpD6w3oK4FJe5G3VOqv2ibbgq5dLhdyGaf/lXweFWL3rWCz/4pdhBk7OMHqLHaBNF6DnaQe/QHjpAFP1oLbU6rdXFX+219oP2o0noQmuas4b+OO3ub9Rgg0w=</latexit>

= log
n

documents that have word j
Hack: add 1 to numerator & 1 to

denominator

An Alternative Feature Vector
Representation for Text: TF-IDF

2
1
2

…

n

Word

Document

…1 d

i-th row, j-th column: # times word j appears in doc i

Term frequency
(TF)

Intuition: words that appear in more documents are likely less useful
(same intuition as stop words!) — let’s downweight these words!

There are many
TF-IDF variants!
(Lots of hacks!)

Default TF-IDF weighting in sklearn

<latexit sha1_base64="3T1sHl62U6D5m4xH8lZNTIpyjnA=">AAAEhnicjVNbb9MwFHZHgREu2+CRF2sXaWhTlUyaBhKTuiEkXpAG7CbV0eQ4J62ZY0ex07Wy8jd44D/xDs/8DR5w0lYLHYg5ivT5XL7zHdsnygTXxvd/tBbutO/eu7/4wHv46PGTpeWVp6daFTmDE6aEys8jqkFwCSeGGwHnWQ40jQScRZdvKv/ZEHLNlTw24wzClPYlTzijxpkulr9s4H1MhOqTJKfMBqXFmxNI1oiBkbE4VqxIQRqNzYAaPKBDwFcqj3H5ubSyfIFLjxiegsbkkPd7Ad5qErqddKS19RaMuKxIwovlNb/j1wvfBMEUrHVfb/s/v339eHSxsvCdzGiZoFr3Aj8zoaW54UyAk1hoyCi7pH3oOSipExza+gBLvOEsMU5U7n5pcG1tZliaaj1OIxeZUjPQ877K+DdfrzDJy9BymRUGJJsUSgqBjcLVbeCY58CMGDtAWc6dVswG1B2ccXfmed4GbrJpRgXEoR2AGIIpK28OEq6YSlMqY5LQlItxDAkthLFEJ1NY4jmi4yC0VaeVprkiTfKGVVM56dLzbira9zuvdq5lEanylIqqgHdLgd4/1f1fhI11FT1p5BOY9y7iQGQDGoGrUd9JEiVlnV26olMSx65iLvtlU4eNRi5QzHcPRikRqVFtPzCH0OfyrRzyXMnqwV0Ls0SAIVHaKOs+J/f6ECzhMnaB9SiQQs5y1+ucWLsZXC+rlJnDzUIw//JvgtOdTrDb8T+4oeiiyVpEz9Eq2kQB2kNd9A4doRPE0K/Wamurtd1ebHfau+29SehCa5rzDP2x2t3f0gmLBA==</latexit>

×
[
1 + log

1 + n
1 + # documents that have word j

]

sklearn’s default behavior
further normalizes each row to

have Euclidean norm 1

TF-IDF is in your HW2
(usage is similar to CountVectorizer from the demo)

How to choose the number of topics k?

Look at within topic variability and between topic variability

Within Topic Variability
Let’s look at top-20 word lists (the ones from the demo)

Focus on a single topic at a time

P(see word “years” | see word “good”)

If this probability is high for every pair of
words in the top-20 list, then in some
sense the topic is more “coherent”

If we see the word “good”, how likely
are we to see the word “years”?

Between Topic Variability
Let’s look at top-20 word lists (the ones from the demo)

If “good” only shows up in the top-20 word list for topic 0,
then it is considered a unique top word for topic 0

Each topic has a number of unique top words

How to Choose Number of Topics k?

Coherence (within topic variability):

Number of unique words (between topic variability):

For a specific topic, look at the m most probable words (“top words”)

Count # top words that do not appear in any
of the other topics’ m top words

Can average
each of these

across the
topics

X

top words v ,w
that are not the same

log
documents that contain both v and w

documents that contain w
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> log of P(see word v | see word w)

+ 0.1

avoid
numerical

issues

Can plot average coherence vs k, and average # unique words vs k
(for values of k you are willing to try)

Unlike for CH index, no clear way to trade off between avg. coherence
and avg. # unique words (they aren’t even in the same units!!!)

Topic Modeling: Last Remarks

• There are actually many topic models, not just LDA

• Dynamic topic models: track how topics change over time

• Hierarchical Dirichlet Process, correlated topic models, SAGE,
anchor word topic models, ProdLDA, embedded topic model, …

• Trivial to add supervision to topic models! Can have topics
learned help with prediction tasks!

• Reminder: learning topic models can be very sensitive to random
initialization

95-865

Part I: Exploratory data analysis

Part II: Predictive data analysis

• Frequency and co-occurrence analysis
• Visualizing high-dimensional data/dimensionality reduction
• Clustering

• Basic concepts and how to assess quality of prediction models
• Neural nets and deep learning for analyzing images and text

Identify structure present in “unstructured” data

Make predictions using known structure in data

• Topic modeling

What if we have labels?

Disclaimer: unfortunately “k”
means many things

Example: MNIST handwritten digits have known labels

If the labels are known…

And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

(Flashback) Learning a GMM

Step 0: Pick k

Step 1: Pick guesses for cluster probabilities, means, and covariances

Step 2: Compute probability of each point belonging to each of the k
clusters

Step 3: Update cluster probabilities, means, and covariances carefully
accounting for probabilities of each point belonging to each of the
clusters

Repeat until convergence:

(often done using k-means)

Don’t need this top part if we know the labels!

We don’t need to repeat until convergence

And we assume data generated by GMM…
If the labels are known…

What are the model parameters?

k = # of colors

We can directly estimate
cluster means, covariances

What should the label of
this new “test” point be?
Whichever cluster has

higher probability!

(a procedure that given a test data point
tells us what “class” it belongs to)

What should the label of
this new “test” point be?

Decision boundary

We just created a classifier

Whichever cluster has
higher probability!

This classifier we’ve created assumes a
generative model

You’ve seen a prediction model that
is partly a generative model

Linear regression!

x

y
Model parameters: slope m, intercept b

Feature vector
(1D in this case)

Label
(1D in this case)

x

y

For specific value of x,
assume y drawn from

Gaussian with mean mx+b,
standard dev 𝜎

Model parameters: slope m, intercept b

Feature vector
(1D in this case)

Label
(1D in this case)

Note: Standard linear regression
has no generative procedure

for generating values of x
though!

Predictive Data Analysis
Training data

(x1, y1), (x2, y2), …, (xn, yn)

Goal: Given new test feature vector x, predict label y

A giant zoo of methods

• y is discrete (such as colors red and blue)
➔ prediction is referred to as classification

• y is continuous (such as a real number)
➔ prediction is referred to as regression

• Generative models (like what we just described)

• Discriminative models (just care about learning prediction rule;
after training model, we don’t have a way to generate data)

We could have many
such test feature vectors,

which we collectively
refer to as test data

Example of a Discriminative
Method: k-NN Classification

Example: k-NN Classification

What should the label of
this new point be?

Example: k-NN Classification

What should the label of
this new point be?

1-NN classifier prediction

Example: k-NN Classification

What should the label of
this new point be?

2-NN classifier prediction

Randomly
break tie

Example: k-NN Classification

What should the label of
this new point be?

3-NN classifier prediction

We just saw: k = 1, k = 2, k = 3

What happens if k = n?

How do we choose k?
What I’ll describe next can be used to select
hyperparameter(s) for any prediction method

Fundamental question:
How do we assess how good a prediction method is?

Hyperparameters vs. Parameters

• We fit a model’s parameters to training data
(terminology: we “learn” the parameters)

• We pick values of hyperparameters and they do not get fit to
training data

• Example: Gaussian mixture model
• Hyperparameter: number of clusters k
• Parameters: cluster probabilities, means, covariances

• Example: k-NN classification
• Hyperparameter: number of nearest neighbors k
• Parameters: N/A

⚠ Major assumption:
the training and test data “look similar”

(technically: training and test data are i.i.d.
sampled from the same underlying distribution)

In other words, we assume that there is an unknown generative process
that produces every pair (xi, yi) from the exact same distribution

Prediction becomes harder when training and test data appear quite different!

Test data
point

Test data
point

Test data
point

Test data
point

Test data
point

Want to classify
these points

correctly

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point Training

data point

Training
data point

Training data

Example: future
emails to classify as

spam/ham
Example: Each data point is an email and

we know whether it is spam/ham

Training
data point

Training
data point

Predicted
labels

Predict on data in
orange

Train method on data in gray

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Compute
prediction error

50%
This is called data splitting/“train-validation split”

In this example: we did a 80%-20% split

(this shuffling makes sense since we assume data are i.i.d.)

Terminology for this class:
“Proper training data”

(the gray box)

“Validation data”
(the orange box)

Some people, including sklearn, call this “train-test split” but in this class, we will use
“test data” to refer to true test data that the training procedure does not see

Predict on data in
orange

Train method on data in gray

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Compute
prediction error

50%

But we could have chosen different proper training/validation data!

Predict on data in
orange

Train method on data in gray

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

0%

Compute
prediction error

50%

But we could have chosen different proper training/validation data!

Predict on data in
orange

Train method on data in gray

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

0%50%

Compute
prediction error

50%

But we could have chosen different proper training/validation data!

Predict on data in
orange

Train method on data in gray

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

0%50%0%

Compute
prediction error

50%

But we could have chosen different proper training/validation data!

Predict on data in
orange

Train method on data in gray

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

0%50%0%0%

Unclear which is best, so let’s just average: (0+0+50+0+50)/5 = 20%

Compute
prediction error

50%

But we could have chosen different proper training/validation data!

We get 5 different prediction errors…
which is more accurate? 🧐

k-fold Cross-Validation

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

Training
data point

1. Shuffle data and split them into 5 (roughly) equal size portions
2. For each of the equal sized portions:

(a) Treat the current portion has the validation data and the rest as
proper training data
(b) Train on the proper training data, predict on the validation data
(c) Compute prediction error

3. Compute average prediction error

k = 5

not the same k as in k-means or k-NN classification

“cross validation score”

You need to specify how to
measure prediction error!

Choosing k in k-NN Classification

For each k = 1, 2, 3, …, the maximum k you are willing to try:

Compute 5-fold cross validation score using k-NN classifier as
prediction method

Use whichever k has the best cross validation score

